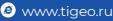

ТОЧНОЕ СКАНИРОВАНИЕ РЕАЛЬНОГО МИРА



Мобильные SLAM

3D лазерные сканеры

trade-in

О компании OmniSLAM

Компания OmniSLAMTM уже давно занимается исследованиями и применением технологий искусственного интеллекта и робототехники в различных областях, включая съемку и картографирование геопространственной информации, цифровых двойников, цифровые фабрики, интеллектуальное производство, метавселенную, мультимедиа и т.д.

Компания OmniSLAM $^{\text{TM}}$ разработала высокоточные мобильные лазерные 3D сканеры с собственными запатентованными технологиями, включая модели R8, R8+, D8, T8, RM (Explosion-proof) и RM+ (Explosion-proof).

OmniSLAM $^{\text{TM}}$ стремится исследовать границы науки и техники, руководствуясь концепцией «Точное сканирование реального мира», воспроизводя реальный мир в цифровой сфере.

2 см

Сходимость между проходами

2 MM

Шум облака точек

0.005°

Точность по горизонтали / вертикали

4 технологии

LIO-PANO², RTK-SLAM³, PPK-SLAM⁴, LiRF⁵

Июль.2016 Основание OmniSLAM CO., Ltd. Март.2018 Запущен первый мобильный цветной 3D лазерный сканер первого поколения SLAM DLP6-Premium. **Апрель.2020** OmniSLAM™ RLP6 обеспечивает вращающееся пространство для сканирования с помощью одного лидара. Июнь.2022 Выпущен геодезический и картографический прибор R8 который обеспечивает абсолютную точность 2 обл WGS84 в пределах 3 см **Июнь.2023** Запущен инструмент D8, для сканирования объектов культурного наследия, который открывает до облакам цветных точек с разрешением HD full space, ч соответствует уровню точности первых миллиме Февраль.2024 Оборудование для точного моделирования R8+ испо вращающийся одиночный лидар для получения обл точностью первых миллиметров. Декабрь.2024 Многофункциональный прибор Т8 позвол

съемку на транспортном средстве с помс

который поддерживает съемку и картографирование с до миллиметра, что обеспечивает многофункциональн

Продукция

Мобильный SLAM 3D лазерный сканер

Мобильный 3D лазерный сканер - это устройство для получения высокоточных данных, использующее четыре основные технологии: LIO-PANO², RTK-SLAM³, PPK-SLAM⁴, LiRF⁵. Сканер может быть ручным, мобильным и устанавливаться на транспортное средство, что позволяет использовать различные методы работы, обеспечивать эффективный сбор данных для объединения в помещении и на улице, легко получать высокоточные облака цветных точек с точностью первых миллиметров. ССканер широко используется в различных областях, таких как создание ВІМ моделей существующих объектов, формирования исполнительной документации по существующему объекту, стройконтроль, топографическая съемка, паспортизация дворовых территорий, исследования в области охраны водных ресурсов, обследования зданий и сооружений, обследования шахт, картографирование подземных пространств, энергетические инспекции, лесные обследования и т.д.

2. LIO-PANO: технология для улучшения визуализации и анализа данных, собранных с помощью лазерных сканеров, путем добавления цветовой информации к облакам точек.

Два фиксированных лидара

- 3. RTK-SLAM: плотно связанный алгоритм дополнительной фильтрации для кинематической съемки в реальном времени (Real-Time Kinematic).
- **4. PPK-SLAM:** плотно связанный алгоритм дополнительной фильтрации для постобработанной кинематической съемки (Post-Processed Kinematic).
- **5. LiRF:** технология направлена на улучшение визуализации, реконструкции и анализа данных, особенно в сложных условиях, таких как подземные пространства, промышленные объекты или динамические среды.

1. Области со слабым количеством и качеством могут повлиять на точность повторения, относительную и абсолютную точность, поэтому лучше получать точные облака точек в соответствии с методами работы, рекомендуемыми производителем.

0

Три фиксированных лидара

Реалистичный цвет • Сантиметровый уровень шума

картография Вращающийся одиночный лидар

Модель	R8-120	R8-300
Количество скан-линий	32	32
Максимальная дальность сканирования	120 м	300 м
Скорость сканирования тчк/с	640 0000	640 0000

2 см **Сходимость между** проходами¹

0.015° Точность по

горизонтали / вертикали

RTK-SLAM² PPK-SLAM³

▲ На рюкзаке

Точное моделирование

Реалистичный цвет • Миллиметровый уровень шума

Ручной

моделирование Вращающийся одиночный лидар

Модель	R8+120	R8+300
Количество скан-линий	32	32
Максимальная дальность сканирования	120 м	300 м
Скорость сканирования тчк/с	640 000	640 000

2 мм
Точность динамического сканирования

Автоматическое моделирование 3D Mesh моделей

2 мм Шум облака точек

Пикселизация как у фототекстур

▲ На рюкзаке

Фасады и объекты культурного наследия

Реалистичный цвет Миллиметровый уровень шума Два фиксированных лидара

Автоматическое моделирование 3D Mesh моделей

Точность 2 мм

Качество облака точек стационарного сканера

30 км/ч Высокая скорость сканирования

Модель	D8-120
Количество скан-линий	32*2
Максимальная дальность сканирования	120 м
CKODOCTP CKAHNDOBAHNG TAK/C	1 280 000

модель	D8-300
Количество скан-линий	32*2
Максимальная дальность сканирования	300 м
Скорость сканирования тчк/с	1280 000

▲ На рюкзаке

- **1.** Области со слабым количеством и качеством могут повлиять на точность повторения, относительную и абсолютную точность, поэтому лучше получать точные облака точек в соответствии с методами работы, рекомендуемыми производителем.
- **2. RTK-SLAM:** плотно связанный алгоритм дополнительной фильтрации для кинематической съемки в реальном времени (Real-Time Kinematic).
- **3. PPK-SLAM:** плотно связанный алгоритм дополнительной фильтрации для постобработанной кинематической съемки (Post-Processed Kinematic).

18 Многоканальный

Реалистичный цвет • Миллиметровый уровень шума Три фиксированных лидара

Модель	T8-120	T8-300
Количество скан-линий Максимальная дальность сканирования	32*3 120 м	32*3 300 м
Скорость сканирования тчк/с	1920 000	1920 000

Автоматическое моделирование 3D Mesh моделей

Качество облака точек стационарного сканера

60 км/ч Высокая скорость сканирования

На рюкзаке ▶

Крепление на автомобиль ▶

Взрывобезопасный мобильный лазерный SLAM сканер

OmniSLAM™ выпустила две модели мобильных взрывобезопасных 3D лазерных сканеров для SLAM: взрывобезопасный и искрозащищенный с сантиметровой точностью и RM+ для моделирования с миллиметровой точностью, которые представлены в общей сложности пятью продуктами. Модели RM и RM+ широко используются в различных отраслях, таких как угольные шахты, предприятия химической промышленности с опасными условиями и другие взрывоопасные объекты, для получения облаков точек горных выработок и шахт. Модель RM+ для моделирования с миллиметровой точностью также может автоматически генерировать полигональные модели для создания цифровой двойной платформы заводских объектов и предоставления 3D органических чертежей для цифровой трансформации предприятий химической промышленности с опасными условиями.

Взрывобезопасность для применения в шахтах

Модель	RM-120	RM-300
Количество скан-линий	32	32
Максимальная дальность сканирования	120 м	300 м
Скорость сканирования тчк/с	640 000	640 000

Сантиметровый уровень шума Вращающийся одиночный лидар

Степень защиты ІР54

Время работы 3 часа

Отчет о точности и инструкция по установке GCP

Моделирование для горнодобывающей промышленности

Миллиметровый уровень шума Вращающийся одиночный лидар

Модель	RM+120	RM+300
Количество скан-линий	32	32
Максимальная дальность сканирования	120 м	300 м
Скорость сканирования тчк/с	640 000	640 000

Точность 2 мм

Облака точек в реальном времени

Автоматическое моделирование 3D Mesh моделей

OmniSLAM™ Capturer

Программное обеспечение для сбора данных

- Поддержка отображения в режиме реального времени для предотвращения слепых зон сканирования
- Отображение данных, их сбор, хранение и передача по телефону
- Мониторинг состояния устройства в режиме реального времени

OmniSLAM™ Mapper

Программное обеспечение для обработки данных

- Автоматически преобразует данные в облака точек, панорамы и траектории
- Поддерживает генерацию облаков точек в системы координат WGS84 и системы координат, принятые для РФ.
- Поддерживает очистку облаков точек, генерацию облаков точек WGS84 и другие функции
- ◎ Поддержка экспорта отчета о точности и рекомендации по дополнению контрольных точек (GCP)

OmniSLAM™ Viewer

Программное обеспечение для сбора данных

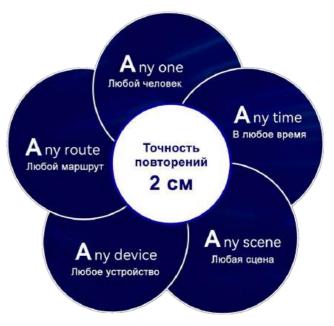
- Высокоскоростная загрузка облаков точек
- Отображение взаимодействия реальных сцен и облаков точек
- Измерение объектов на облаке точек и возможность записи видеотура
- Поддерживает методы отображения облаков точек по цвету, интенсивности, классификации и высоте

OmniSLAM™ Modeler

Автоматическое моделирование (только для R8+/D8/T8/RM+)

- Автоматическое создание сетчатых моделей с использованием облаков точек с уровнем точности (мм)
- Поддержка файлов моделей в распространенных форматах, таких как obj, osgb и других
- Внедрение сторонних инструментов для обработки моделей
- Нет необходимости в кластерах, эффективно создавать модели может один компьютер
- Легкие решения для моделирования реальных 3D-сцен

Преимущества


Критерии проведения геодезии и картографирования

Определение

В геопространственной отрасли, когда любая сцена сканируется кем угодно, по любому маршруту, с использованием любого устройства и в любое время, теоретически должны быть получены УНИКАЛЬНЫЕ облака точек.

Точность повторения⁴

Сканеры R8, R8+, D8 и Т8 соответствуют строгим критериям 5А для геодезии и картографии. Точность повторяемости облаков точек в системе координат WGS84 или локальных координатах составляет 2 см при повторном сканировании.

Гарантированная точность

Сканеры OmniSLAM™ обеспечивают стабильную и надежную точность каждой операции.

4. Области со слабым количеством и качеством могут повлиять на точность повторения, относительную точность и абсолютную точность, поэтому лучше получать точные облака точек в соответствии с методами работы, рекомендуемыми производителем.

*Результаты тестирования в типичных условиях можно получить, проконсультировавшись с производителем по поводу конкретного метода тестирования.

SLAM технология геодезии и картографирования

OmniSLAM™ RTK-SLAM, уникальный алгоритм взаимодополняющей фильтрации с жесткой связью, позволяет пользователям получать облака точек с точностью менее 3 см в WGS84, так что нет необходимости в GCP.

В случае слабого качества сигнала RTK может возникнуть ложное GNSS-исправление, которое приведет к неправильному отображению облаков точек. OmniSLAM $^{\text{TM}}$ PPK-SLAM - инновационный тип тесно связанного алгоритма дополнительной фильтрации, независимо разработанный компанией OmniSLAM $^{\text{TM}}$, который способен поддерживать точные фиксированные решения. Даже в сложных условиях он по-прежнему может получать облака точек WGS84 с точностью 1:500.

Вертикаль

150 м

Отчёт о точности

Omni SLAMTM Mapper генерирует отчет о точности, который содержит среднее значение абсолютного отклонения (MAD) облаков точек для каждого сканирования и трехмерную тепловую карту точности облаков точек.

Инструкция по вставке GCP

Лазерный сканер Mobile SLAM 3D генерирует инструкцию по вводу GCP*. Для облаков точек с неудовлетворительной точностью при определенном сканировании в инструкции будет указано количество и расположение GCP.

*Для получения информации о адаптируемых функциях продуктов, пожалуйста, обратитесь к таблице параметров.

Облака точек в реальном времени

OmniSLAM™ Capturer генерирует и отображает облака точек в режиме реального времени в процессе работы, позволяя операторам тщательно сканировать проектную площадку без пропусков, повторений и переделок, одновременно генерируя предварительные результаты текущего сканирования. Программа Capturer делает каждое сканирование быстрым и качественным.

Отображение облаков точек в режиме реального времени

Точность геодезии и картографирования - первые миллиметры

Мобильный SLAM 3D-лазерный сканер OmniSLAM $^{\text{TM}}$, обеспечивающий **относительную точность** 1 определения облаков точек в пределах первых миллиметров и **абсолютную точность** 2 определения облаков точек в пределах 2 см. Он отвечает требованиям к высокоточной геодезии и картографированию с точностью 1:500, а также требованиям различных отраслей промышленности.

Схема в масштабе 1:500

"Горизонталь и вертикаль" облака точек

Мобильный лазерный сканер SLAM 3D может генерировать абсолютные облака точек по горизонтали и вертикали WGS84. Погрешность измерения точности по горизонтали и вертикали находится в пределах 0.005° (R8+/D8/T8/RM+), что гарантирует точность измерения по стандарту WGS84 на местности и на большой высоте в пределах 2 см.

1, 2. Области со слабым количеством и качеством могут повлиять на точность повторения, относительную и абсолютную точность, поэтому лучше получать точные облака точек в соответствии с методами работы, рекомендуемыми производителем.

Облегченное автоматическое моделирование реальных 3D-сцен

Облака точек с миллиметровым уровнем точности поддерживают создание полигональных моделей в формате OBJ/OSGB. Благодаря многомодельному методу fusion-моделирования лидарного и панорамного изображений Omni SLI M^TM отпадает необходимость в сложных вычислениях. Один компьютер, а не неуклюжий кластер, может эффективно создавать сетчатые модели. Кроме того, общие форматы данных совместимы с программным обеспечением сторонних производителей для уточнения моделей.

Цветные облака точек с уровнем точности (мм)

Полигональная модель

Свобода движения

Благодаря усовершенствованному алгоритму SLAM в OmniSLAM™ операторам не нужно осторожно держать устройство и медленно передвигаться. Сканер по-прежнему может получать высокоточные облака точек при любых движениях оператора.

Бег

Вращение

Раскачивание

Переворачивание

От спецификации к великолепию

Мобильный SLAM 3D-лазерный сканер оснашен 1дюймовой CMOS-камерой SONY, поэтому он может создавать яркие цветные облака точек от детализированных точек до крупномасштабных сценариев, облегчая точные измерения, моделирование и построение графиков.

а. Пешеходный

переход

b. Уличный

фонарь

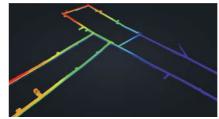
люка

с. Крышка

Приложение

Крупномасштабный чертеж DLG

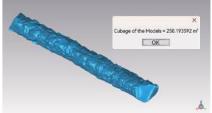
Мобильный 3D лазерный сканер эффективно распознает режим бесполетной зоны DLG и использует панорамное изображение для интерпретации в режиме реального времени, что позволяет выполнять крупномасштабные чертежные работы.


Цветные облака точек зданий

Облака точек и панорамное изображение

Цифровая линейная графика

Расчет кубатуры горной выработки


Облака точек, полученные с помощью мобильного лазерного SLAM сканера, четко отображают форму и структуру горной выработки, а также могут быть использованы для быстрого расчета кубатуры, что повышает эффективность управления шахтами.

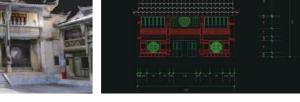
Цветные облака точек выработки шахты

Расчет кубатуры по облаку

Цифровой двойник завода

OmniSLAM™ Modeler преобразует цветные облака точек с точностью до миллиметра в трехмерные сетчатые модели в формате OBJ/OSGB, чтобы получить базовые данные для заводского цифрового двойника.

Цветные облака точек теплоэлектростанцииутилизатора

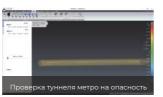

3D Mesh модели теплоэлектростанции-утилизатора

Объекты культурного наследия

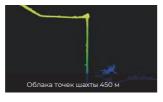
Мобильный 3D-лазерный сканер SLAM способен эффективно получать изображения облаков точек с точностью до миллиметра на предметах интерьера, наружной резьбе и объектах культурного наследия. Сканер быстро строит плоские чертежи / чертежи высот / чертежей разрезов и использует программное обеспечение OmniSLAM™ Modeler для получения трехмерных Mesh моделей, которые могут эффективно помочь в цифровой защите древних зданий.

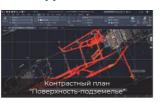
Цветные точечные облака древних зданий

Графическая линия возвышения 3D Mesh модели древних зданий

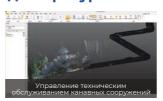

Обследование лесного хозяйства

Техническое обслуживание туннелей




3D Mesh модели нефтехимической базы

Анализ пространственных данных шахты


Обследование электростанции

Проект по охране водных ресурсов

Управление строительством ВІМ

Мониторинг строительства завода

Параметры

RM+

Относительная точность 1	1 см	2 мм
Абсолютная точность ²	3 см	3 см
Survey Standard 5A ³	$\sqrt{}$	$\sqrt{}$
Сходимость между проходами	4 2 см	2 см
Точность по горизонтали и верти	кали 0.015°	0.005°
Плотность облака точек 5	10 000 точек/м²	250 000 точек/м²
Шум облака точек	1 см	2 мм
Тепловая 3D карта точности обл точек	пака	V
Отчёт о точности	\checkmark	\checkmark
Инструкция по вставке GCP	\checkmark	$\sqrt{}$
Облака точек в реальном врем	ени √	$\sqrt{}$
3D Mesh модели	×	$\sqrt{}$
Пылевлагозащищённость	IP54	IP54
Электрический параметр Uo	1: DC 12.5V, Io1: 2.0A, Co1: 20µI	F, Lo1: 20µH, Uo2: 15V, Io2: 1.3A

ТОЧНОЕ СКАНИРОВАНИЕ РЕАЛЬНОГО МИРА

Относительная точность	1 см	2 мм (динамическое и статическоесканирование)
Абсолютная точность 2	Горизонтальная: 1.8 см Вертикальная: 2.5 см	Горизонтальная: 1.8 см Вертикальная: 2.5 см
Survey Standard 5A ³	√	V
Сходимость между проходами 4	2 см	2 cm
Точность по горизонтали и вертикал	0 .015°	0.005°
Плотность облака точек 5	10 000 точек/м²	250 000 точек/м²
Шум облака точек	1 см	2 мм
Удаление движущихся объектов	\checkmark	\checkmark
Раскрашивание облака точек	V	\checkmark
Лидар	32 · 120 м · 640 000 точек/с 32 · 300 м · 640 000 точек/с	32 · 120 м · 640 000 точек/с 32 · 300 м · 640 000 точек/с
Поле зрения	360° x 360°	360° x 360°
Спутниковые системы	GPS/GLONASS/Galileo/BDS/QZSS	GPS/GLONASS/Galileo/BDS/QZSS
Точность RTK	Горизонтальная: 0.8 см + 1 ppm Вертикальная: 1.5 см + 1 ppm	Горизонтальная: 0.8 см + 1 ppm Вертикальная: 1.5 см + 1 ppm

Относительная точность	2 мм (динамическое и статическое сканирование)	2 мм (динамическое и статическое сканирование)
Абсолютная точность ²	Горизонтальная: 1.8 см Вертикальная: 2.5 см	Горизонтальная: 1.8 см Вертикальная: 2.5 см
Survey Standard 5A ³	V	V
Сходимость между проходами 4	2 см	2 cm
Точность по горизонтали и вертик	сали 0.005°	0.005°
Плотность облака точек ⁵	250 000 точек/м²	500 000 точек/м²
Шум облака точек	2 мм	2 мм
Удаление движущихся объектов	√	√
Раскрашивание облака точек	V	V
Лидар	32 · 120 м · 1 280 000 точек/с 32 · 300 м · 1 280 000 точек/с	32 · 120 м · 1 920 000 точек/с 32 · 300 м · 1 920 000 точек/с
Поле зрения	360° x 360°	360° x 360°
Спутниковые системы	GPS/GLONASS/Galileo/BDS/QZSS	GPS/GLONASS/Galileo/BDS/QZSS
Точность RTK	Горизонтальная: 0.8 см + 1 ppm Вертикальная: 1.5 см + 1 ppm	Горизонтальная: 0.8 см + 1 ppm Вертикальная: 1.5 см + 1 ppm

	R8	R8+
Система CORS	\checkmark	\checkmark
GNSS приёмник	V	√
Матрица	1-дюймовый SONY CMOSx2	1-дюймовый SONY CMOSx2
Поле зрения камеры	360°	360°
Объектив	Leica F2.2x2	Leica F2.2x2
Рабочая температура	-25 °C ~ 65 °C	-25 °C ~ 65 °C
Размеры (Д x Ш x B)	35 x 32 x 99 см	35 х 32 х 99 см
Bec	Вес с рюкзаком: 8.7 кг Вес в руке: 2.1 кг (120 м) Вес в руке: 1.8 кг (300 м)	Вес с рюкзаком: 8.7 кг Вес в руке: 2.1 кг (120 м) Вес в руке: 1.8 кг (300 м)
Облака точек в реальном времени	√	√
LIO-PANO ⁶	√	√
RTK-SLAM ⁷	√	√
PPK-SLAM ⁸	√	√
LiRF ⁹	×	√
3D Mesh модели	×	√
Тепловая 3D карта точности облака точек	√	√
Отчет о точности	√	√
Инструкция по вставке ССР	V	√

^{1/2/4.} Области со слабым количеством и качеством могут повлиять на точность повторения, относительную точность и абсолютную точность, поэтому лучше получать точные облака точек в соответствии с методами работы, рекомендуемыми производителем.

	D8	T8
Система CORS	\checkmark	\checkmark
GNSS приёмник	√	V
Матрица	1-дюймовый SONY CMOSx2	1-дюймовый SONY CMOSx2
Поле зрения камеры	360°	360°
Объектив	Leica F2.2x4	Leica F2.2x4
Рабочая температура	-25 °C ~ 65 °C	-25 °C ~ 65 °C
Размеры (Д х Ш х В)	45.8 x 31.6 x 104.7 см	46.6 x 30.5 x 47.2 см
Bec	Вес с рюкзаком: 10 кг Вес в руке: 2.1 кг	11.7 кг
Облака точек в реальном времени	V	$\sqrt{}$
LIO-PANO ⁶	√	V
RTK-SLAM ⁷	√	V
PPK-SLAM ⁸	\checkmark	√
LiRF ⁹	\checkmark	V
3D Mesh модели	V	V
Тепловая 3D карта точности облака точ	ек √	V
Отчет о точности	√	V
Инструкция по вставке GCP	√	V

^{5.} Плотность облака точек: сканеры могут достигать максимальной плотности облака точек.

^{3.} Критерий 5А в геодезии и картографировании: В геопространственной отрасли, когда любая сцена сканируется кем угодно, по любому маршруту, с использованием любого устройства и в любое время, теоретически должны быть получены УНИКАЛЬНЫЕ облака точек. Сканеры R8, R8+, D8 и Т8 соответствуют строгим критериям 5А для геодезии и картографии. Точность повторяемости облаков точек в системе координат WGS84 или локальных координатах составляет 2 см при повторном сканировании.

^{6.} LIO-PANO: технология опредназначена для улучшения визуализации и анализа данных, собранных с помощью лазерных сканеров, путем добавления цветовой информации к облакам точек.

^{7.} RTK-SLAM: т ехнология особенно полезна в условиях, где требуется высокая точность позиционирования и построения карт в реальном времени, например, в геодезии, строительстве, сельском хозяйстве и автономных системах.

^{8.} PPK-SLAM: плотно связанный алгоритм дополнительной фильтрации для постобработанной кинематической съемки (Post-Processed Kinematic).

^{9.} LiRF: технология направлена на улучшение визуализации, реконструкции и анализа данных, особенно в сложных условиях, таких как подземные пространства, промышленные объекты или динамические среды.